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A Short Note on P-Value Hacking
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Abstract—We present the expected values from p-value hack-
ing as a choice of the minimum p-value among m independents
tests, which can be considerably lower than the "true" p-value,
even with a single trial, owing to the extreme skewness of the
meta-distribution.

We first present an exact probability distribution (meta-
distribution) for p-values across ensembles of statistically iden-
tical phenomena. We derive the distribution for small samples
2 < n ≤ n∗ ≈ 30 as well as the limiting one as the sample size n
becomes large. We also look at the properties of the "power" of
a test through the distribution of its inverse for a given p-value
and parametrization.

The formulas allow the investigation of the stability of the
reproduction of results and "p-hacking" and other aspects of
meta-analysis.

P-values are shown to be extremely skewed and volatile,
regardless of the sample size n, and vary greatly across repetitions
of exactly same protocols under identical stochastic copies of the
phenomenon; such volatility makes the minimum p value diverge
significantly from the "true" one. Setting the power is shown to
offer little remedy unless sample size is increased markedly or
the p-value is lowered by at least one order of magnitude.

P -VALUE hacking, just like an option or other mem-
bers in the class of convex payoffs, is a function that

benefits from the underlying variance and higher moment
variability. The researcher or group of researchers have an
implicit "option" to pick the most favorable result in m trials,
without disclosing the number of attempts, so we tend to get
a rosier picture of the end result than reality. The distribution
of the minimum p-value and the "optionality" can be made
explicit, expressed in a parsimonious formula allowing for the
understanding of biases in scientific studies, particularly under
environments with high publication pressure.

Assume that we know the "true" p-value, ps, what would its
realizations look like across various attempts on statistically
identical copies of the phenomena? By true value ps, we
mean its expected value by the law of large numbers across
an m ensemble of possible samples for the phenomenon
under scrutiny, that is 1

m

∑
≤m pi

P−→ ps (where P−→ denotes
convergence in probability). A similar convergence argument
can be also made for the corresponding "true median" pM . The
distribution of n small samples can be made explicit (albeit
with special inverse functions), as well as its parsimonious
limiting one for n large, with no other parameter than the
median value pM . We were unable to get an explicit form for
ps but we go around it with the use of the median.

It turns out, as we can see in Fig. 3 the distribution is
extremely asymmetric (right-skewed), to the point where 75%
of the realizations of a "true" p-value of .05 will be <.05 (a
borderline situation is 3× as likely to pass than fail a given
protocol), and, what is worse, 60% of the true p-value of
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Fig. 1. The "p-hacking" value across m trials for the "true" median p-value
pM = .15 and expected "true" value ps = .22. We can observe how easily
one can reach spurious values < .02 with a small number of trials.
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Fig. 2. The different values for Equ. 1 showing convergence to the limiting
distribution.

.12 will be below .05. This implies serious gaming and "p-
hacking" by researchers, even under a moderate amount of
repetition of experiments.

Although with compact support, the distribution exhibits
the attributes of extreme fat-tailedness. For an observed
p-value of, say, .02, the "true" p-value is likely to be >.1
(and very possibly close to .2), with a standard deviation
>.2 (sic) and a mean deviation of around .35 (sic, sic).
Because of the excessive skewness, measures of disper-
sion in L1 and L2 (and higher norms) vary hardly with
ps, so the standard deviation is not proportional, meaning
an in-sample .01 p-value has a significant probability of
having a true value > .3.
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So clearly we don’t know what we are talking about
when we talk about p-values.

Earlier attempts for an explicit meta-distribution in the
literature were found in [1] and [2], though for situations of
Gaussian subordination and less parsimonious parametrization.
The severity of the problem of significance of the so-called
"statistically significant" has been discussed in [3] and offered
a remedy via Bayesian methods in [4], which in fact recom-
mends the same tightening of standards to p-values ≈ .01.
But the gravity of the extreme skewness of the distribution
of p-values is only apparent when one looks at the meta-
distribution.

For notation, we use n for the sample size of a given study
and m the number of trials leading to a p-value.

I. DERIVATION OF THE METADISTRIBUTION OF P-VALUES

Proposition 1. Let P be a random variable ∈ [0, 1]) corre-
sponding to the sample-derived one-tailed p-value from the
paired T-test statistic (unknown variance) with median value
M(P ) = pM ∈ [0, 1] derived from a sample of n size.
The distribution across the ensemble of statistically identical
copies of the sample has for PDF

ϕ(p; pM ) =

{
ϕ(p; pM )L for p < 1

2

ϕ(p; pM )H for p > 1
2

ϕ(p; pM )L = λ
1
2 (−n−1)
p√

− λp (λpM − 1)

(λp − 1)λpM − 2
√

(1− λp)λp
√

(1− λpM )λpM + 1 1

1
λp
− 2
√

1−λp
√
λpM√

λp
√

1−λpM
+ 1

1−λpM
− 1


n/2

ϕ(p; pM )H =
(
1− λ′p

) 1
2 (−n−1) (

λ′p − 1
)

(λpM − 1)

λ′p (−λpM ) + 2
√(

1− λ′p
)
λ′p
√

(1− λpM )λpM + 1

 n+1
2

(1)

where λp = I−1
2p

(
n
2 ,

1
2

)
, λpM = I−1

1−2pM

(
1
2 ,

n
2

)
, λ′p =

I−1
2p−1

(
1
2 ,

n
2

)
, and I−1

(.) (., .) is the inverse beta regularized
function.

Remark 1. For p= 1
2 the distribution doesn’t exist in theory,

but does in practice and we can work around it with the
sequence pmk = 1

2±
1
k , as in the graph showing a convergence

to the Uniform distribution on [0, 1] in Figure 4. Also note
that what is called the "null" hypothesis is effectively a set of
measure 0.

Proof. Let Z be a random normalized variable with realiza-
tions ζ, from a vector ~v of n realizations, with sample mean
mv , and sample standard deviation sv , ζ = mv−mh

sv√
n

(where mh

is the level it is tested against), hence assumed to ∼ Student T

with n degrees of freedom, and, crucially, supposed to deliver
a mean of ζ̄,

f(ζ; ζ̄) =

(
n

(ζ̄−ζ)2+n

)n+1
2

√
nB
(
n
2 ,

1
2

)
where B(.,.) is the standard beta function. Let g(.) be the one-
tailed survival function of the Student T distribution with zero
mean and n degrees of freedom:

g(ζ) = P(Z > ζ) =


1
2I n

ζ2+n

(
n
2 ,

1
2

)
ζ ≥ 0

1
2

(
I ζ2

ζ2+n

(
1
2 ,

n
2

)
+ 1

)
ζ < 0

where I(.,.) is the incomplete Beta function.
We now look for the distribution of g ◦ f(ζ). Given that

g(.) is a legit Borel function, and naming p the probability
as a random variable, we have by a standard result for the
transformation:

ϕ(p, ζ̄) =
f
(
g(−1)(p)

)
|g′
(
g(−1)(p)

)
|

We can convert ζ̄ into the corresponding median survival
probability because of symmetry of Z. Since one half the
observations fall on either side of ζ̄, we can ascertain that
the transformation is median preserving: g(ζ̄) = 1

2 , hence
ϕ(pM , .) = 1

2 . Hence we end up having {ζ̄ : 1
2I n

ζ̄2+n

(
n
2 ,

1
2

)
=

pM} (positive case) and {ζ̄ : 1
2

(
I ζ2

ζ2+n

(
1
2 ,

n
2

)
+ 1

)
= pM}

(negative case). Replacing we get Eq.1 and Proposition 1 is
done.

We note that n does not increase significance, since p-
values are computed from normalized variables (hence the
universality of the meta-distribution); a high n corresponds
to an increased convergence to the Gaussian. For large n, we
can prove the following proposition:

Proposition 2. Under the same assumptions as above, the
limiting distribution for ϕ(.):

lim
n→∞

ϕ(p; pM ) = e−erfc−1(2pM )(erfc−1(2pM )−2erfc−1(2p)) (2)

where erfc(.) is the complementary error function and
erfc(.)−1 its inverse.

The limiting CDF Φ(.)

Φ(k; pM ) =
1

2
erfc

(
erf−1(1− 2k)− erf−1(1− 2pM )

)
(3)

Proof. For large n, the distribution of Z = mv
sv√
n

becomes that
of a Gaussian, and the one-tailed survival function g(.) =
1
2 erfc

(
ζ√
2

)
, ζ(p)→

√
2erfc−1(p).

This limiting distribution applies for paired tests with known
or assumed sample variance since the test becomes a Gaussian
variable, equivalent to the convergence of the T-test (Student
T) to the Gaussian when n is large.
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Fig. 3. The probability distribution of a one-tailed p-value with expected
value .11 generated by Monte Carlo (histogram) as well as analytically with
ϕ(.) (the solid line). We draw all possible subsamples from an ensemble with
given properties. The excessive skewness of the distribution makes the average
value considerably higher than most observations, hence causing illusions of
"statistical significance".
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Fig. 4. The probability distribution of p at different values of pM . We observe
how pM = 1

2
leads to a uniform distribution.

Remark 2. For values of p close to 0, ϕ in Equ. 2 can be
usefully calculated as:

ϕ(p; pM ) =
√

2πpM

√
log

(
1

2πp2
M

)

e

√
− log

(
2π log

(
1

2πp2

))
−2 log(p)

√
− log

(
2π log

(
1

2πp2
M

))
−2 log(pM )

+O(p2). (4)

The approximation works more precisely for the band of
relevant values 0 < p < 1

2π .

From this we can get numerical results for convolutions of
ϕ using the Fourier Transform or similar methods.

II. P-VALUE HACKING

We can and get the distribution of the minimum p-value per
m trials across statistically identical situations thus get an idea
of "p-hacking", defined as attempts by researchers to get the

lowest p-values of many experiments, or try until one of the
tests produces statistical significance.

Proposition 3. The distribution of the minimum of m obser-
vations of statistically identical p-values becomes (under the
limiting distribution of proposition 2):

ϕm(p; pM ) = meerfc−1(2pM )(2erfc−1(2p)−erfc−1(2pM ))(
1− 1

2
erfc

(
erfc−1(2p)− erfc−1(2pM )

))m−1

(5)

Proof. P (p1 > p, p2 > p, . . . , pm > p) =
⋂n
i=1 Φ(pi) =

Φ̄(p)m. Taking the first derivative we get the result.

Outside the limiting distribution: we integrate numerically
for different values of m as shown in figure 1. So, more
precisely, for m trials, the expectation is calculated as:

E(pmin) =

∫ 1

0

−m ϕ(p; pM )

(∫ p

0

ϕ(u, .) du

)m−1

dp

III. OTHER DERIVATIONS

Inverse Power of Test

Let β be the power of a test for a given p-value p, for
random draws X from unobserved parameter θ and a sample
size of n. To gauge the reliability of β as a true measure of
power, we perform an inverse problem:

β Xθ,p,n

β−1(X)

∆

Proposition 4. Let βc be the projection of the power of the
test from the realizations assumed to be student T distributed
and evaluated under the parameter θ. We have

Φ(βc) =

{
Φ(βc)L for βc < 1

2

Φ(βc)H for βc > 1
2

where

Φ(βc)L =
√

1− γ1γ
−n2
1(

− γ1

2
√

1
γ3
−1
√
−(γ1−1)γ1−2

√
−(γ1−1)γ1+γ1

(
2
√

1
γ3
−1− 1

γ3

)
−1

)
n+1

2√
− (γ1 − 1) γ1

(6)

Φ(βc)H =
√
γ2 (1− γ2)

−n2 B

(
1

2
,
n

2

)
 1
−2(
√
−(γ2−1)γ2+γ2)

√
1
γ3
−1+2
√

1
γ3
−1+2

√
−(γ2−1)γ2−1

γ2−1 + 1
γ3

 n+1
2

√
− (γ2 − 1) γ2B

(
n
2 ,

1
2

)
(7)

where γ1 = I−1
2βc

(
n
2 ,

1
2

)
, γ2 = I−1

2βc−1

(
1
2 ,

n
2

)
, and γ3 =

I−1
(1,2ps−1)

(
n
2 ,

1
2

)
.
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IV. APPLICATION AND CONCLUSION

• One can safely see that under such stochasticity for
the realizations of p-values and the distribution of its
minimum, to get what a scientist would expect from a
5% confidence level (and the inferences they get from it),
one needs a p-value of at least one order of magnitude
smaller.

• Attempts at replicating papers, such as the open science
project [5], should consider a margin of error in its
own procedure and a pronounced bias towards favorable
results (Type-I error). There should be no surprise that a
previously deemed significant test fails during replication
–in fact it is the replication of results deemed significant
at a close margin that should be surprising.

• The "power" of a test has the same problem unless one
either lowers p-values or sets the test at higher levels,
such at .99.
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